
Technical Task Sample

Problem: Building a Product Management API

Objective

Design and implement a RESTful API for managing products in an e-commerce application.

The API should allow clients to perform CRUD (Create, Read, Update, Delete) operations on

products while ensuring data integrity and validation.

Requirements

Entities

1. Product

• Properties:

• Id (int, primary key)

• Name (string, required, max length 100)

• Description (string, optional, max length 500)

• Price (decimal, required, must be greater than 0)

• StockQuantity (int, required, must be greater than or equal to 0)

• CreatedAt (DateTime, auto-generated)

• UpdatedAt (DateTime, auto-generated on update)

API Endpoints

1. GET /api/products

• Returns a list of all products.

• Supports optional query parameters for pagination (page, pageSize) and

filtering by name.

2. GET /api/products/{id}

• Returns a single product by its ID.

• Responds with a 404 status code if the product is not found.

3. POST /api/products

• Creates a new product.

• Request body must include Name, Description, Price, and

StockQuantity.

• Responds with a 201 status code and the created product object.

• Validates input data and returns appropriate error messages for invalid data.

4. PUT /api/products/{id}

• Updates an existing product.

Technical Task Sample

• Request body must include Name, Description, Price, and

StockQuantity.

• Responds with a 404 status code if the product is not found.

• Responds with a 200 status code and the updated product object.

• Validates input data similar to the POST method.

5. DELETE /api/products/{id}

• Deletes a product by its ID.

• Responds with a 204 status code if successful.

• Responds with a 404 status code if the product is not found.

Data Validation

• Implement custom validation attributes for the properties of the Product entity:

• Ensure that the Price is greater than zero.

• Ensure that the StockQuantity is not negative.

Database Context

• Use Entity Framework Core to manage database interactions.

• Create a DbContext class named ProductDbContext that includes a

DbSet<Product> for managing products.

Testing

• Write unit tests for each endpoint using an in-memory database to ensure that:

• All CRUD operations function as expected.

• Validation rules are enforced correctly.

• Error handling works properly (e.g., returning appropriate status codes).

Documentation

• Use Swagger/OpenAPI to document your API endpoints.

• Include examples of requests and responses for each endpoint.

